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Abstract 

Due to their zero pollution emissions, health improvements benefits and ease of access bicycles are gaining 

an increasing popularity as a mean of transportation in today’s world. However, traffic accidents involving 

bikes are not decreasing, as well as fatalities. Thus, it is important to assess cyclists’ safety in urban 

scenarios to allow city planners to develop better infrastructures that foster better protection for cyclers. 

Therefore, from smartphone captured data and video, we propose a video-based framework to assess 

dangerous situations for bicyclists. We take advantage of motion estimation (optical flow) to estimate the 

Focus of Expansion on a set of images and then use this to define risk areas on the image. We then use 

the defined areas on the image to create a risk descriptor on the given situation and given the detected 

objects on the image. Our framework enables the assessment of risk on different criteria (Path Occupation 

and Proximity) based on our risk descriptor.  

Finally, we test our framework on real data gathered from the improved developed smartphone application 

and achieve promising results.  
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Resumo 

Devido a ser um meio de transporte com zero emissões poluentes, ter benefícios para a saúde e a sua 

facilidade de acesso, a popularidade das bicicleta está a aumentar nos dias que correm. Contudo, o número 

de acidentes onde estão envolvidas bicicletas e consequentes fatalidades parece não estar a diminuir. Por 

isso, é importante que se devsenvolva um método que consiga analisar quão seguro este meio de 

transporte é, para que planeadores urbanos consigam desenvolver melhores estruturas e redes para 

bicicletas, como ciclovias, de modo a promover uma melhor segurança para os ciclistas. 

Com isto, é a partir de dados e vídeos capturados por um smartphone que propomos um método que 

consiga avaliar situações perigosas para os ciclistas. Explorando o movimento numa sequência de imagens 

(fluxo óptico) conseguimos estimar o Foco de Expansão e usamos este Foco para definir áreas de perigo 

na imagem. Depois, usando estas regiões é criado um descritor de perigo com base nos diferentes objectos 

detectados na imagem para uma dada situação. Deste modo, o noso método permite definir diferentes 

critérios de perigo (Ocupação de via, Proximidade) com base no descritor de perigo criado. 

Finalmente, testamos o nosso método de avaliação de perigo em imagens capturadas pelo smartphone e 

concluímos com resultados muitos promissores. 
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Chapter 1  

1 Introduction 
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1.1 Cycling in Urban Areas 

Most environmental and mobility problems in cities across developed countries comes from prevalent car 

usage. It is paramount that we find ways to combat this growing trend which causes high pollution levels, 

health problems and accidents. By fighting against this tendency, we can decrease the economic 

dependence on fuel which may lead to decreasing the society’s susceptibility to an energy crisis, as it was 

done in the Netherlands to fight the oil crisis of 1970 by investing in cycling infrastructure [1]. 

Furthermore, active commuting is one potential way to combat this growing dependence on fossil fuels. 

Walking and cycling have been shown to have cardiovascular benefits when practiced for around 30 minutes 

per day, for 5 days a week [2]. A study done by Oja et al. [3] showed that this type of commuting does 

enhance cardiorespiratory and metabolic fitness of sedentary adults. It also concluded that cycling is more 

effective than walking due to its slightly higher intensity.  

On the other hand, a more recent trend in Europe is to promote tourism through what is called cycle tourism, 

as tourism represent the third largest economic activity in the EU. Since 2010, several projects have been 

undertaken to promote cycling as a way to discover regions and from 2007 to 2013 600 million euros have 

been spent for creating cycle infrastructures that contribute to this type of tourism [4]. The European Cyclists’ 

Federation currently is responsible for managing a European project called EuroVelo, which incorporates 

more than 45.000 𝑘𝑚 in cycle routes spread across Europe in order to promote tourism [5]. Weston and 

Mota [6] summarise what are the principal implications that cycling would take in the sustainability of tourism. 

Notwithstanding having such a big importance on the environment, health and economy, cycling has not 

yet seen such a growth in use as one would expect. The study conducted in Belgium by Vandenbulcke et 

al. [1], discretise the major determinants that contribute to a higher or lower bicycle use. These can be 

divided into Demographic and Socio-economic, Cultural and Societal and Environmental and Political 

determinants. They conclude that if properly implemented, policies that address these determinants can 

result in an increasing bike use. Issues like the lack of cycling routes, too high or too low traffic volumes and 

even low quality of traffic signalling can result in major deal breakers for newcomers in cycling. Thus, to 

promote cycling commuting these infrastructures need to be heavily thought out by city planners, otherwise 

the fear caused by roads and its vehicles can be too daunting for new cyclists, as enumerated by Pucher 

[7]. 

Factors like poor road or bike lane design, bad road signalling and behavioural characteristics are expected 

to influence the number of accidents that happen to cyclists. Accident statistics in the USA show that the 

highest fatality count was in 2015 since 1995, despite the injury count being down 10% from 2015 to 2014, 

[8]. In 2013, the City of Boston release a study [9],  in which it describes ways to make roadways safer for 

vulnerable users by using the “six E’s of bicycle planning: Engineering, Education, Enforcement, 

Encouragement, Evaluation, and Equity”, and evaluating its running program for improving bike use. It also 
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states that through its investment in bike lanes, bike sharing programs and bike facilities improvements it 

has transformed the city into “becoming a world-class cycling city”. The City of New York have also released 

data [10], [11], where it shows the decrease in Cycling Risk (which they evaluate by the number of severe 

injuries and fatalities per cycling trips) by the implementation of protected bicycle corridors on its main 

avenues.  

However, these studies that lead to policy changes and better urban cycling design are mostly done by 

taking into account the number of injuries, fatalities and accidents that happen in a certain location that 

involves bicyclists. Our approach targets the risk assessment of cyclists in urban areas using a data capture 

system that ultimately can identity risky or harmful areas before accidents happen and, therefore, prevent 

these accidents from ever happening at all. 

 

1.2 Sensing: Getting data from smartphones 

Today smartphones are cheap and widely used by most population in cities. In fact, more smartphones 

have been purchase than PCs since 2011 [12] and its market share on Connected Devices is expected to 

keep on increasing, achieving 87% of the worldwide smart connected device market jointly with tablets 

according to IDC [13]. Smartphone applications and their development are also very common nowadays. 

Statistically, Apple’s number of application in its store have grown by almost a factor of 10 since 2010 [14], 

and on Android’s Play Store an average of 50,000 apps are released every month [15].  

Smartphones are also equipped with a variety of sensors which allow the capture of a multiplicity of 

acceleration and velocity signals, such as linear accelerations, gravitational accelerations and angular 

velocities. Other sensors allow the recording of audio (using the microphone) and video (using one of the 

available cameras). Another set of important information that can be gathered using this device is GPS data, 

which enables the identification of events in a geographical fashion. This variety of sensor driven data, 

aligned with the simplicity on developing applications, has led to a variety of available developed apps. 

Given the wide usage of smartphones today, it is only natural that to study the risk associated to cycling we 

could use a smartphone to capture data and translate the collected data into risk factors. Several works 

have been conducted which start from the development of a smartphone application and use the captured 

data to perform studies in the activity of the users. Studies vary from human activity recognition to human 

driving behaviour.  

In [16] a Context Pyramid with raw sensor data is used to estimate ubiquitous position, recognize motion 

and human behaviour. Mitchel et al. [17] use the smartphone accelerometers to automatically identify a 

sporting activity. And although Avci et al. [18] do a survey on activity recognition using inertial sensors in 

Wireless Sensor Networks and not inbuilt smartphone sensors, they enumerate a series of health and 

medical applications where these sensory data could provide assistance to patients with cognitive disorders, 
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child and elderly care and in rehabilitation. Also, work done in [19] tracks users’ physical activities and 

provide feedback in order to foment healthier habits and lifestyle. Su et al. [20] does an overall view on 

different activity recognitions processes, focusing on data that support the main activity recognition 

algorithms.  

In [21], smartphone’s sensors (accelerometer, gyroscope, magnetometer, GPS, video) are used to 

characteristically divide driving as non-aggressive or aggressive. Eren et al. [22] use sensory data to obtain 

position, speed, acceleration and deceleration to estimate commuting safety by analysing driver behaviour. 

More work on analysing driver’s behaviour have been done in in [23], where this analysis lead to a road 

anomaly detection system. Moreover, the sensory data gathered from smartphones can also be applied to 

fuel saving. As studied by Seraj et al. [24], the breakdown of the sensory data captured by their developed 

Android application and from sensors in the vehicle is able to help drivers reduce their fuel consumption. 

Another set of sensory data that may lead to interesting results is GPS. The resulting data enables for a 

more on-site study, where we can check for data variability according to geographical and real world 

scenarios. Strauss et al., [25], use GPS-driven data to model the volume of cyclists in an area and assess 

injury risk throughout the road segments and intersections in the island of Montreal. Moreover, in [26] 

accelerometers are used to estimate the vehicle’s speed and then sense the traffic volume at a location.  

Previous work in [27], also analysed stress from ECG data by analysing the relation between stress level 

and the Inter-beat Intervals variation. However, it concluded that there was a misinterpretation between 

stressful events and high intensity intervals (e.g. when terrain was unlevelled), which needed to be classified 

separately using the corresponding videos captured by an action camera and GPS data. This led to 

improvements being made to the previously developed app in [27].  

To sum up, we can see that most related work is done over the inertial sensors to estimate and identify 

certain activities or events. However, our work focus more on image processing and computer vision to 

detect and contextualize a set of events that may cause stress to the user. And although our improved 

developed application from [27] also records inertial, sound and GPS data, we take advantage of the 

information only available through the captured images. 

 

1.3 Computer Vision on Risk Analysis 

In order to assess risk from a video recorded on a bike, we come up with the following question: What 

causes risk to cyclists and how can we judge it?  

In an urban scenario, there are several events that may lead to a cyclist being harmed like collision with 

other vehicles or pedestrians, speeding vehicles, running red lights/stop signals, misleading traffic signals, 

among many others. Thus, it is important to be able to distinguish what these objects or situations are.  
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As briefly mentioned above, our aim is to take advantage of images taken from a smartphone to assess 

dangerous situations to cyclers. Consequently, we need to divide the captured images into sections, 

depending on what information of risk they contain. So, one way to important feature must be the detection 

of different objects on a scene, like cars, buses or even people. 

Several works have been conducted in the last years to improve object detection and segmentation. The 

current state of the art consists on convolutional neural networks which divide an image into regions or 

sub-images and try to detect objects on each one of the regions. To do this, each region is passed through 

a series of layers and then, if the score for the detected object is above a certain threshold, the region is 

said to contain that object. However, although this is a straightforward procedure, it is still computational 

heavy. In fact, the computational bottleneck in these object detection algorithms is still tied with the region 

proposals for the classification. Faster R-CNN [28], explores this by introducing a novel way to divide the 

image using a Region Proposal Network. Newer procedures, continue to explore this bottleneck and try to 

fasten even more the complete procedure. YOLO [29] presents the problem solution as a unique neural 

network pipeline, and thus increasing speed. SSD [30] goes even further by discretizing the output space 

into different aspect ratios and scales the making procedure adjustments to better match the object’s 

bounding box.  

However, it is not only important to find objects and their locations on an image, it also important to figure 

out it the discovered object presents a threat to the cyclist. In order to do this, we also need to find the 

direction the user is moving towards. This motion produced by the cyclist produces a particular point in the 

image called the Focus of Expansion (FOE), which represents the convergence of all motion in the image 

in a single point [31]. Although each object movement in the image can produce its own FOE, we are only 

interested in the one made by the user’s movement, as it is the risk to the cycler we are studying. The FOE 

can be discovered by calculating an image’s optical flow (OF). The optical flow is used to detect motion 

 

(a)                                                           (b)                                                           (c) 

Figure 1.3.1 – Left and middle images represent the motion between two captured images. On the right, the optical 

flow (from the car and the main road) resulting from the previous images is shown. 
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between a series of similar images. The optical flow is represented as vectors that depict the amount and 

position of the motion that happened between two images.  

Figure 1.3.1 shows how the OF can be seen in a road scenario. Here we can see two distinct types of optical 

flow: one produced by our movement in relation to the road (in blue); and the second which translates the 

motion of the car itself but with a contribution of our motion as well (in red).  

Although optical flow has been studied for many years now, it still presents an open-problem due to its 

calculation complexity caused by large motions, texture-less regions, shadows, reflections and many other 

factors. Plus, it is computational demanding, as one needs to find an appropriate motion match across the 

whole image. The most prominent and widely algorithm to calculate the sparse optical flow is the Lucas and 

Kanade pyramidal algorithm [32]. More recent works present the problem of solving dense optical flow 

problems to better get a denser and accurate motion estimation, [33], [34]. 

To sum up, we do an analysis the risk of a given situation by examining to where the user is moving and 

whether there is any object that may present as a treat between the user and its destination. 

 

1.4 Outline of the Thesis 

In this thesis, we focus on detecting and contextualizing stressful events to a cycler. This study is made 

based on image processing from image gathered from a smartphone attached to a bicycle’s handlebar. 

These events are based on objects in the proximity of the biker, or objects that are, in some way, an obstacle 

in the route the cyclist is taking.  

To detect events that may cause risk to the cycler, we divide our work in four main steps, as shown in Figure 

1.4.1. We calculate the Focus of Expansion first with the Optical Flow between two image and second with 

detected objects in the image. Finally, we use the FOE and detected objects to calculate a risk associated 

to the presented situation. 

 

Optical Flow 

Object Recognition 

Focus of Expansion 

Risk Assessment 

Figure 1.4.1 – Workflow of the work developed. 
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This thesis is separated in 5 chapters, including this introductory chapter. 

On Chapter 2, the data acquisition process is presented, as well as the organization of the recorded data 

on the server. 

Following, is Chapter 3, which describes how the risk assessment of stressful situation is made, starting 

from the discovery of the optical flow from the images and then discovering the focus of expansion 

associated with them. 

Chapter 4 presents some results from the processing made to some of the acquired images from the 

database. 

Finally, Chapter 5 wraps up the work developed and suggests some future work. 

1.5 Contributions of the Thesis 

With the work developed on this thesis we improved the previously available Android app. This new app is 

now able to capture new sets of data like video and sound acquisition, new GPS information (speed and 

measurement error) and a new set of acceleration signals, as well as the smartphone rotation matrix and 

orientation. New work was also developed on the backend server, developing an automatically data storage 

location for the data that is uploaded from the smartphone’s app. 

Another contribution is the detection of stressful or risky events and estimation of the Focus of Expansion 

purely based on image processing. 

The database of all the recorded data (sensory data, videos and sound recording) is made available, as 

well as all the processing code used in this thesis. 
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Chapter 2 

2 Data Acquisition 
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In this chapter, we will describe how and what data is acquired by the developed system, focusing on the 

types of data that are acquired and how the data is gathered by the system and then uploaded to a central 

location where we can access it and then use it in processing. 

2.1 Mobility in Cities: The Application 

To gather data from the smartphone an Android app was used. This app was built over the previously made 

app in [27]. This previously developed smartphone app enabled the recording of simple acceleration, 

velocity and GPS signals. The improvements made it possible to record another sets of acceleration and 

velocity signals, more GPS information than the one available before, and most important, it makes it 

possible to also record audio and video directly from the app. Moreover, it is now possible to upload the 

recorded data directly to our database if an internet connection is available to the smartphone. 

Specifically, the app is able to acquire the following data from the smartphone: 

• Date: the date and time of the measurement, [𝑦𝑒𝑎𝑟,𝑚𝑜𝑛𝑡ℎ, 𝑑𝑎𝑦, ℎ𝑜𝑢𝑟,𝑚𝑖𝑛𝑢𝑡𝑒, 𝑠𝑒𝑐𝑜𝑛𝑑𝑠]; 

• Acceleration: get the smartphone’s applied force of acceleration along the 3 axes (𝑥, 𝑦 and 𝑧), 

[𝑚/𝑠2]; 

• Linear Acceleration: get the smartphone’s acceleration along the 3 axes (𝑥, 𝑦 and 𝑧), excluding any 

acceleration caused by gravity, [𝑚/𝑠2]; 

• Gravity Acceleration: get the smartphone’s acceleration along the 3 axes (𝑥, 𝑦 and 𝑧), caused strictly 

by gravity, [𝑚/𝑠2]; 

• Angular Velocity: get the angular velocity around the 3 axes (𝑥, 𝑦 and 𝑧), [𝑟𝑎𝑑𝑠/𝑠]; 

• Orientation: get the degrees of rotation that the smartphone makes around the three axis (𝑥, 𝑦 and 

𝑧), [°]; 

• Rotation Vector: used to measure the vector of rotation of the device, [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠]; 

• Step Counter: some smartphones got an inbuilt step counter, [𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠]. However because 

not all tested smartphones got this sensor, the data resulting from this sensor was disregarded for 

now; 

• Significant Motion: some smartphones got an inbuilt triggered significant motion sensor, which is 

responsible for automatically detect what type is motion is present (walking, bicycling or driving), 

[0 𝑜𝑟 1]. Again, because not all tested smartphones have this sensor, the data resulting from this 

sensor was disregarded for now; 

• GPS coordinates, velocity and GPS accuraccy: get the current latitude, longitude, speed at which 

the phone is moving and the error associated with the coordinates, [°, °, 𝑚/𝑠,𝑚]; 
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• Video: if enabled, get image recording from the smartphone’s camera, and; 

• Audio: if enabled, get audio recording from the smartphone’s microphone. 

The acceleration and angular velocities axis 𝑥, 𝑦 and 𝑧 are depicted in Figure 2.1.1 for each smartphone. 

 

Figure 2.1.1 - Representation of the smartphone axes. 

Given that different smartphones were used to acquire data, the video outputs are different because each 

smartphone has a different camera hardware and therefore, the resolution and quality of the resulting video 

for each phone is different. 

Additionally, some personal information is also asked when the user first uses the application, such as: 

• Username: name under which the user is registered; 

• Password: password associated with the username; 

• Gender: gender of the user; 

• Age: the user’s age in an interval manner (e.g. 15-24); 

• Biking experience: the user’s biking skill: Little, Some experience or Professional; 

• Bike suspension: whether the bike used has a suspension or not. 

This information is used to create an account on the server that stores the captured data, but this is further 

described below. 

2.2 Data on the server: Backend 

There are two ways for the app to communicate with the server: either registering or uploading a data file 

to it. In the former, the user’s personal information is sent to the server to create a unique account. In the 

latter, the data files are uploaded to the server. 

𝑥 

𝑧 
𝑦 
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When registering, the user’s personal information is used to create a user folder on the server associated 

to the user that is recording the data, so that all recorded data from the same user is saved under the same 

directory. This allows for a more direct link between events that may be associated with reactions (biking 

experience) or smoother accelerations (the suspension on the bike may attenuate steeper acceleration 

transitions). Note that usernames cannot be repeated, so in the event that a user tries to register with an 

already used username, it is asked the user to register under a different username. In case the username 

and password match with an already registered pair, then it is considered that the user reinstalled the app, 

and it is only logging in, and thus allow the user to continue using the app. 

The second communication type is uploading a file. By doing this, it allows for a faster, simpler and more 

organised way to get access to all the data from every user, instead of having to copy all recorded files via 

a USB connection between the smartphone and the computer. 

Whenever a file is selected and then uploaded to the server in the app, it sends the file, the user that is 

sending it, its password and a simple authentication password. In the server, first we check if the 

authentication password is valid. If not, we simply ignore the request received. Otherwise we then check if 

it corresponds to an already registered user using the sent user-password pair. If this match to the ones 

registered on the server, then the uploaded file is saved under the user’s folder on the server, where we 

keep its name, so that we have a time registry of when the file was recorded. 

If the uploaded file was of the sensor type (“.txt”), we automatically generate a geographical map of the 

user’s trip, so that the user can have some feedback of how we are exploring the data he sent. In the future, 

we also would like to generate other type of information and give it to the user, for example how many high-

risk event happened during the trip, where and what caused them, or a map of the speed at which the user 

travelled.  

 

 

 

 

 

 

 

  



12 

 

 

 

 

 

 

 

 

 

Chapter 3 
 

3 Risk Assessment using 

the Focus of Expansion
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In this chapter, we describe how we use optical flow to discover the focus of expansion in a set of images 

and further use the discovered focus of expansion to signal possible stress or risky events in a set of images. 

3.1 Overview  

Given our problem of risk assessment to cyclists, our work consists in evaluating the trajectory of the cyclist 

and estimate the amount of risk of a certain scenario.  

Associated with risk is, inevitably, the direction the bicyclist is taking. It is evident that a person located in 

front of the cycler presents a higher threat than a parked car in the side of the road, in the case that the 

cyclist is moving parallel to the road. So, it is paramount to first find the movement of the cycler. In an image, 

this direction corresponds to the Focus of Expansion. This point, in the image frame, represents the 

convergence of the depicted motion in the image, where such motion is given by the optical flow. Second, 

it is also vital to detect objects in the image, as their location on the image may present different levels of 

risk. Figure 3.1.1 present a summary of our risk assessment framework.  

So, as mentioned, our risk assessment framework is based on the estimation of the Focus of Expansion 

and the relation between objects in the image frame and this point. Again, the Focus of Expansion is the 

 

Figure 3.1.1 – Risk assessment framework: The estimation of the Focus of Expansion (red point) allows a 

representation of different level risk areas in the image. Risk is evaluated taking into account the objects in the 

image (blue rectangles) and the path of the cyclist (red area in the image). 
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point in the image that maps the convergence of the cyclist’s motion vectors in the image. To compute such 

an important point from the optical flow we consider different properties of the image, which we will describe 

next. 

 

3.2 Static Scene 

Let’s first consider the static scene case where we have a certain amount of motion described only by the 

cyclist between two consecutive video frames (and no other motion coming from other moving objects in 

the image). In this case, the optical flow calculated has no interference from motions related to moving 

objects. As such, the motion vectors point towards only one location in the image, and the intersection of all 

these vectors result in the Focus of Expansion.  

To compute the optical flow between two frames needed to estimate the Focus of Expansion, which is 

represented as a vector between two corresponding points in the two frames, one can use the 

Lucas-Kanade method. This method proposes to solve the optical flow equations (1) with partial derivatives 

𝐼𝑥, 𝐼𝑦 and 𝐼𝑡 for 𝑥, 𝑦 and 𝑡 respectively, for all pixels 𝑞ℎ, with ℎ = 1,… , 𝑛, around point 𝑝, for the velocity 

vector 𝑉 = [𝑉𝑥 , 𝑉𝑦]. 

𝐼𝑥(𝑞1)𝑉𝑥 + 𝐼𝑦(𝑞1)𝑉𝑦 = −𝐼𝑡(𝑞1) 

⋮ 

𝐼𝑥(𝑞𝑛)𝑉𝑥 + 𝐼𝑦(𝑞𝑛)𝑉𝑦 = −𝐼𝑡(𝑞𝑛) 

(1) 

This problem can be written in matrix form as  

𝐴𝑣 = 𝑏 , (2) 

where 

𝐴 = [

𝐼𝑥(𝑞1) 𝐼𝑦(𝑞1)

⋮ ⋮
𝐼𝑥(𝑞𝑛) 𝐼𝑦(𝑞𝑛)

] , 𝑣 = [
𝑉𝑥
𝑉𝑦
] and 𝑏 = [

−𝐼𝑡(𝑞1)
⋮

−𝐼𝑡(𝑞𝑛)
] (3) 

To solve this problem, the Lucas-Kanade method obtains a solution using the Least Squares principle (4). 

𝑣 = (𝐴𝑇 𝐴)−1 𝐴𝑇𝑏 (4) 

Given the motion vectors in the image 𝑣𝑖, with 𝑖 = 0,… , 𝑁, one can then find the Focus of Expansion as the 

intersection of all motion vectors. In other words, one must find the point which is closest to all lines 𝐿𝑖 which 

are the extension of each optical flow vector 𝑣𝑖. Let 𝑥 ∈ ℝ2 be a point in the image frame and each line 𝐿𝑖 
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be mapped in parametric form as 𝐿𝑖 = {𝑝𝑖 + 𝑣𝑖𝑡}, with 𝑝𝑖 , 𝑣𝑖 ∈ ℝ
2. The distance between point 𝑥 and 𝐿𝑖 can 

be seen as 𝑓(𝑥, 𝐿𝑖) = |(𝑥 − 𝑝𝑖) −
(𝑥−𝑝𝑖)(𝑣𝑖)

|𝑣𝑖|
2 (𝑣𝑖)|. Assuming some error in the calculations of the optical flow 

vectors (due to the window size or level or pyramids used), the point 𝑥̃ , which is the point closest to all lines 

𝐿𝑖, can be computed using the following optimization problem: 

𝑥̃ = argmin
𝑥

∑𝑓(𝑥, 𝐿𝑖)

𝑁

𝑖=0

 (5) 

So, assuming a priori that the optical flow computed across the image has some error associated in its 

calculations, we choose to weigh the computed optical flow vectors. This way we can distinguish some 

better vectors over others. Because velocity vectors depend on the amount of motion that is done on a 

certain area of the image, one way to do this weighting is to look at vectors magnitudes. So, vectors which 

are closer to the previous frame’s FOE are smaller than the vectors farthest from the FOE. So, we assign 

weights regarding the magnitude of vectors according to their distance to the FOE. Specifically, we divide 

the image into 4 concentric circles with different radius and with centre on the previously found FOE in the 

last frame. We then look at the distribution of magnitudes in each annulus (formed by a circle minus its inner 

circles) and on the inner most circle and compute the mean of the magnitudes for each one of the 4 areas. 

We divide the vectors into different level bins (similar to what is done in [35]) according to its magnitude and 

how close it is to the mean of the area they are in. This way, we can discretise the weights 𝑚𝑖 we assign to 

each vector 𝑣𝑖. We assign 𝑚𝑖 in accordance to (6). Additionally, if the magnitude is below a certain threshold 

we assign it the lowest 𝑚𝑖 score possible (𝑚𝑖 = 0.1). Figure 3.2.1 shows a representation of this. 

𝑚𝑖 =

{
 
 

 
 0.10 𝑖𝑓 0 < log (𝑑𝑖) <

1

3
log(𝑑̅) ,

0.75 𝑖𝑓 
1

3
log (𝑑̅) < log (𝑑𝑖) <

1

2
log (𝑑̅) 𝑜𝑟 

5

3
log (𝑑̅) < log (𝑑𝑖) < log (𝑑𝑚𝑎𝑥),

1.00 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
  

 (6) 

where, 𝑑𝑖 is the magnitude of vector 𝑣𝑖, 𝑑̅ the mean of magnitudes in the area the vector is in and 𝑑𝑚𝑎𝑥 the 

maximum magnitude found in the area the vector is in.   

This way, we can re-map our problem to use the magnitude weights 𝑚𝑖 as: 

𝑥̃ = argmin
𝑥

∑𝑚𝑖 ⋅ 𝑓(𝑥, 𝐿𝑖)

𝑁

𝑖=0

 (7) 

Solving this new optimization problem will result in a better estimation of the FOE because we can better 

choose what vectors weigh more in the FOE estimation. 
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3.3 Dynamic Scene 

However, static scenes are rare in our scenarios. In fact, in most instances there are other moving objects 

in the scene like cars, people on the sidewalk or other bikes and thus it creates what we call the dynamic 

scene. 

So, we perform another type of weighting, considering the objects in the scene and with the knowledge that 

their movement may disrupt the calculations of the optical flow. Thus, we first must detect all the interesting 

objects in the scene (i.e. cars, people, motorcycles, bikes and buses) and assess how they contribute to the 

OF miscalculations. 

To detect objects in a scene, we feed the Faster R-CNN [28] with the image we are analysing in parallel. 

This object detector has proven to do well with objects that we are interested in detecting, namely, cars, 

buses, motorbikes, bicycles and people. The R-CNN (hereon now named NN for simplification), was trained 

using the PASCAL VOC 2007 [36] dataset, which contains the above-mentioned classes of objects, among 

others, which we discard in our analysis. The NN outputs the object location (under a bounding box format), 

its class and a score of confidence on the detection (which is an interval of [0,1]). Figure 3.3.2 depicts the 

output of the NN for a given image frame. 

So, each OF vector is checked whether it is calculated on an object (the vector coordinates are checked 

whether they are inside any object’s bounding box). Again, this is done because these objects may present 

a motion in a direction that is different from the one that the cyclist is taking and thus inducing error in the 

 

Figure 3.2.1 - In yellow are shown the limits of the concentric circles used for the calculation of the magnitude 

weights 𝑚𝑖. Green vectors represent 𝑚𝑖=1, blue vectors 𝑚𝑖=0.75 and vectors in red have a 𝑚𝑖=0.1.  
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FOE estimation. Therefore, we weight these vectors that correspond to objects, giving each vector 𝑣𝑖 a 

weight 𝑜𝑖. Because the NN can output overlapped objects (refer to Figure 3.3.2), we decide that for vectors 

which correspond to overlapped objects in the image we calculate its weight with a contribution of each 

overlapped object. Thus, weights 𝑜𝑖 can be calculated with: 

𝑜𝑖 = ∏ 𝑒−𝑠𝑘

𝑜𝑏𝑗𝑒𝑐𝑡𝐾

𝑘=𝑜𝑏𝑗𝑒𝑐𝑡0

 , (8) 

where 𝑠𝑘 is the confidence score outputted by the NN to a given  𝑜𝑏𝑗𝑒𝑐𝑡𝑘, and 𝑘 is the set of all overlapping 

objects.  

In the case that for vector 𝑣𝑖 there is only one object, (8) can be simplified to: 

𝑜𝑖 = 𝑒−𝑠𝑘  , (9) 

This weight reflects the confidence of the detection by considering the score given by the NN and it penalizes 

objects that have a high confidence of being objects. Note that the case where there is no object detected 

(𝑠𝑘 =  0), the weight of that vector 𝑜𝑖 corresponds to its maximum value (𝑜𝑖 = 1). Figure 3.3.3 shows the 

vectors in accordance to the confidence score 𝑠𝑘. 

By imposing these weights on the vectors, we can better estimate how a vector contributes to the estimation 

of the FOE. Thus, the optimization problem for the estimation of the Focus of Expansion is given by: 

 

Figure 3.3.2 – Output of the NN showing the objects bounding box, class and confidence score. 
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𝑥̃ = argmin
𝑥

∑𝑜𝑖 ⋅ 𝑓(𝑥, 𝐿𝑖)

𝑁

𝑖=0

 (10) 

This new optimization problem will result in a better estimation of the FOE considering the object associated 

weights. 

 

3.4 Focus of Expansion 

In order to estimate the Focus of Expansion on a given frame we take the previously calculated optical flow 

vectors and their weights and try to find the point in the image to where they all converge. To do this is the 

same as trying to solve an optimization problem which tries to minimize the distance between the FOE and 

all the lines that are mapped as the extension of the optical flow vectors. 

Furthermore, we are able to use the previously calculated weights (both magnitude weights and object 

presence weights) to better estimate which vectors are better used in the optimization and thus view the 

impact of the vector weighting. There are several methods that can be used to compute the FOE. However, 

we chose to solve the optimization problem using the Huber Loss distance as a distance metric. 

    

(a)                                                                                    (b) 

                                              
𝑠𝑘 = 0.000     𝑠𝑘 = 0.711     𝑠𝑘 = 0.741     𝑠𝑘 = 0.827  

Figure 3.3.3 – Object associated weights given the confidence score outputted by the NN. Image (b) masks the 

vectors with the confidence score of image (a). 
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The Huber Loss function works as a kind of intermediate between the Least Squares Distance and the 

Manhattan Distance, as it is quadratic for small values and linear for larger values. This way, outliers 

contribute linearly (similar to the 𝑙1-norm), whereas values close to the desired value contribute more. 

This problem can be formulated as in (11) disregarding all weights explained before. 

𝑥̃ = argmin
𝑥

∑ℒ𝛿(𝑓(𝑥, 𝐿𝑖))

𝑁

𝑖=0

 (11) 

Considering the magnitude weights and object associated weight, we can formulate this optimization as: 

𝑥̃ = argmin
𝑥

∑ℒ𝛿(𝑤𝑖 ⋅ 𝑓(𝑥, 𝐿𝑖))

𝑁

𝑖=0

 , (12) 

where ℒ𝛿(𝑎) is the Huber Loss Function, as defined in  

ℒ𝛿(𝑎) = {

1

2
𝑎2 𝑓𝑜𝑟 |𝑎| < 𝛿,

𝛿(|𝑎| −
1

2
𝛿) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (13) 

and weights 𝑤𝑖 of a given OF vector 𝑣𝑖 can be calculated using (14). Note that because both 𝑚𝑖 and 𝑜𝑖 vary 

in the interval [0,1], also 𝑤𝑖 varies in this interval. 

𝑤𝑖 = 𝑚𝑖 ⋅ 𝑜𝑖 (14) 

where 𝑚𝑖 is the magnitude weight and 𝑜𝑖 the object associated weight for vector 𝑣𝑖 explained before. 

A comparison between the Huber Loss Distance optimization and other FOE estimation methods can be 

seen in Appendix B. 

 

3.5 Iterative Object Weights Refinement 

However, given our scenario, one must take in consideration one more aspect: although most objects in a 

scene are non-static, they can be static, i.e., if a car is parked on the side or if a person is standing still on 

the sidewalk, they can be thought-out as static objects, as they do not contribute with any different motion 

to the one the cyclist is taking. Thus, this re-weighting of the object associated weights is performed taking 

this in consideration. 

So, we perform an iterative process where each optical flow vector which is calculated on an object is re-

weighted (only on the 𝑜𝑖 weight) according to its direction. That is, if a vector is pointing away from the 𝑥̃ 
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and its direction is in line with the FOE (see Figure 3.5.1), we consider that the object is not being affected 

by the object, and thus we maximize 𝑜𝑖 = 1. However, if the vector’s direction is being affected by the object 

(e.g. pointing towards the FOE), we minimize its contribution and assign 𝑜𝑖 = 0. Using this newly discovered 

weights, we rediscover the FOE using the same method as before (using the optimization problem with the 

newly found weights). This results in a freshly found FOE. We re-iterate this procedure until either the 

difference in FOEs found is below a threshold or until a maximum number of iterations have been performed.   

Figure 3.5.2 shows an example where we have both static and non-static objects, and thus a re-weighting 

of the 𝑜𝑖 weights is beneficial. 

 

Figure 3.5.1 – Consider the FOE in green. The OF vector in blue (with the line extension from the vector in 

dashed blue) is considered an inlier because 𝜃1 < 15°, whereas the vector in red is evaluated as an outlier 

due to  𝜃2 > 15°. 

 

𝜃1 

𝜃2 

 

Figure 3.5.2 – Vectors calculated on the stopped van on the right side and on the cars on the left side of the image 

should have their object weights maximized, whereas the remaining objects on the image (car in the middle of the 

road and the person on the right) should have their object weight minimized. 
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3.6 Temporal Average of the Foci of Expansion  

Following this, we apply a second step, which consists in performing a weighted average between the 

discovered FOE and the FOEs discovered in the previous 𝑀 frames of the video. This is done because the 

video that was captured is not entirely stabilized, meaning that there are numerous oscillations resulting 

from the handling of the bicycle which affect the FOE. This weighted average is done as in (15). 

𝑥𝑡 =
∑ 𝑒−𝜏(𝑡−𝑗) ⋅ 𝑥̃𝑗
𝑡
𝑗=𝑡−𝑀  

∑ 𝑒−𝜏(𝑡−𝑗)𝑡
𝑗=𝑡−𝑀

 , (15) 

where, 𝑥𝑡 is the FOE estimate at instant time 𝑡, 𝑥̃𝑗 the FOE found using one of the methods mentioned above 

corresponding to instant time 𝑗 and 𝜏 is the decay rate of the weights. 

Figure 3.6.1 shows all estimations of the Foci of Expansion for the previous 𝑀 = 20 frames and the final 

estimation of the Focus of Expansion considering this weighted average. 

Having found the point which maps the direction of the cyclist’s movement, the final step is to define areas 

in the image according to the FOE and assign risk levels to these areas. 

 

 

Figure 3.6.1 – The weighted average of the previous and current FOE (small coloured points) and the result of this 

operation (large red point in the centre of the image). 
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3.7 Risk descriptor 

The estimated FOE gives a sense of direction to where the cyclist is moving. With this, we are able to divide 

the image into five regions which give an idea of the path the cyclist is taking and the risk the user is subject 

to (see Figure 3.7.1.(a)). We further sub-divide each of the 5 areas on the image into 5 horizontal strips (see 

Figure 3.7.1.(b)), which are used to give a sense of distance (lower strips represent a shorter distance to 

the user). We use these defined areas in conjunction with the objects detected to create a risk descriptor 

which maps the motion and proximity risk to the cyclist. The risk descriptor at time 𝑡 is a vector with 25 

positions, with each value assessing a risk of a given sub-region in the image (see (16)). 

𝑑𝑡 = [𝑑𝑡
1 ⋯ 𝑑𝑡

𝑙 ⋯ 𝑑𝑡
25] (16) 

To compute the value of the risk descriptor 𝑑𝑡
𝑙  on sub-region 𝑙 we use (17), which maps the risk associated 

with each object 𝑘 (𝛼𝑘) and its confidence score given by the Neural Network (𝑠𝑘), the risk associated with 

each region and sub-region (𝛾𝑙) and finally the ratio of the occupancy of the object in respect to the sub-

region’s area. 

𝑑𝑡
𝑙 = ∑ 𝑟𝑡

𝑙,𝑘

𝑜𝑏𝑗𝑒𝑐𝑡𝐾

𝑘=𝑜𝑏𝑗𝑒𝑐𝑡0

 , (17) 

   

(a)                                                                                       (b) 

Figure 3.7.1 – Regions and sub-regions used for the risk descriptor. In (a) the 5 regions show the colour-coded risk 

to the user (red is the path of the user and thus represents maximum risk, yellow the regions closest to the user’s 

trajectory and green the furthest regions from the cyclist’s path and minimum risk). Image (b) shows the horizontal 

strips resulting from the division of the 5 regions in (a). 
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where the risk score of each object 𝑘 in sub-region 𝑙 (𝑟𝑡
𝑙,𝑘

) is 

𝑟𝑡
𝑙,𝑘 = 𝛼𝑘 ⋅ 𝑠𝑘 ⋅ 𝛾𝑙 ⋅

𝑎𝑡
𝑙,𝑘

𝑏𝑡
𝑙  , (18) 

where 𝑎𝑡
𝑙,𝑘

 is the object’s 𝑘 area in the sub-region 𝑙 and 𝑏𝑡
𝑙 is the area of the sub-region 𝑙. 

Using this descriptor, we consider several risk factors like the type of object (e.g. cars are riskier than people 

walking by) and its confidence score of being an object, the proximity of the object to the user and path 

trajectory (by using the region and sub-region level) and how big and close the object is (the ratio of areas 

used). Thus, we consider two major risk factors in the risk calculation: the trajectory and object proximity. 

Given the aforementioned descriptor, we further propose to provide an encoding for the level of risk. This 

way, the risk is encoded into levels (1 to 3), providing a more informative and simpler risk assessment 

framework. We encompass this as a supervised classification problem, where we use the Earth Mover’s 

Distance (EMD) [37] as a metric to compare different risk descriptors extracted from its images. While other 

distance metrics are used in image comparisons, like the use of the Euclidean distance for the comparison 

of two colour spaces, EMD is useful because it allows to compare the distance between two distributions 

and find the distance between the two. In our case, it is useful because it allows mapping the sub-regions 

neighbours and the existing symmetry in the image. This is done with the definition of the ground costs 

between the regions and sub-regions of the image, which may alter between regions of the distribution. This 

way, we are able to encapsulate in the ground costs definition the regions and sub-regions definitions 

mentioned above, as well as the existing symmetry in the image.  

The definition of this ground distance matrix allows for different risk assessment models to be defined, 

depending on the distances between regions and sub-regions and the risk associated with each. Here, we 

propose to assess the risk in two criteria: path occupation and proximity. In Chapter 4 we further explore 

the two models used, as well as the definition of the ground distance matrices used for each assessment 

criteria. 
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Chapter 4 

4 Results 
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In this chapter, we explore some of the results from the methods described in Chapter 3. We explore the 

influence of the weights and methods used in the FOE estimation, as well as the optical flow calculations. 

Furthermore, we analyse our two criteria for the cyclist’s risk assessment. Finally, we describe some of the 

results got from the event classification. 

4.1 Focus of Expansion 

Most portable cameras in smartphones can record 30 frames-per-second (fps) videos, which, in our case, 

because the distance travelled between two consecutive frames is small, translates into a small motion 

between two successive frames. To avoid this, we perform downsampling of the video’s frame rate, 

calculating the OF between 2 frames that are separated by 5 frames between them. Note that we could 

avoid this downsampling step and calculate the OF between two consecutive frames, we just had to make 

some adjustments to how the OF is computed and how we could use it to compute the Focus of Expansion. 

To compute the OF between the selected images, we must first consider in what points to calculate it. 

Because we want to take advantage of the most points we can discover in the image and to have these 

points spread out evenly through the whole image we have a different way of discovering keypoints used in 

the optical flow calculations. Firstly, we start by applying a similar method as the one used in [38]. We start 

by dividing the image into 16 different sub-images, as shown in Figure 4.1.1. On each one, we apply a 

histogram equalization filter (CLAHE [39]), which improves contrast and edge characterisation. We then 

apply the Shi-Tomasi method [40] to detect important features in each one of the sixteen images. By doing 

so, we improve the feature detection on low texture areas of the whole image, in which points would be 

disregarded as low scoring features if the Shi-Tomasi algorithm would’ve been ran on the whole image. By 

doing this we also spread the discovered crucial points across the image, whereas before all the points 

could only present themselves in a section of the image and thus compromising the FOE estimation. A 

 

Figure 4.1.1 – Division of the original image into 16 sub-images. 
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comparison of the results using the Shi-Tomasi on the whole image and with the image separation can be 

seen in Figure 4.1.2.  

Next, we calculate the optical flow on these discovered points using the Lukas-Kanade algorithm [32]. We 

adapt the window size and pyramid levels accordingly to the resolution and motion we expect. For example, 

given a resolution of 360p (480×360 pixels), a window of size 35×35 pixels is used, whereas, with a 

resolution of 1080p (1920×1080 pixels) a window size of 200×200 pixels is used. Also, given the 5 frame 

skip in a 30fps video mentioned above, usually a pyramid level of 1 is best used to fit the motion that is 

present between the two frames. Figure 4.1.3 shows the optical flow calculation between two frames with a 

frame skip of 5 between them and using a window size of 200×200 and a pyramid level of 1 as it is a 1080p 

image. 

Weights used in the optimization process are calculated as stated before. For the optimization problem 

using the Huber Loss Distance ((11) and (12)) we used the Python Toolbox 𝑠𝑘𝑙𝑒𝑎𝑟𝑛 and the module 

𝐻𝑢𝑏𝑒𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 [41]. Thus, the result of the optimization step of the Huber Loss distance can be seen in 

Figure 4.1.4. In Figure 4.1.5 we present a heatmap with the distance between each line 𝐿𝑖 and the solution 

for the optimization problem. 

  

 

Figure 4.1.2 - Features tracked using the Shi-Tomasi method [37] in red. In (a) the features are calculated on the whole 

image and in (b) features are calculated using the image separation into 16 sub-images. 

 

 

(b) 

(a) 
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(a)                                                                               (b) 

 

(c) 

Figure 4.1.3 - Optical flow calculation ((c)) between two frames ((a) and (b)). 

 

 

    

(a)                                                                                 (b) 

Figure 4.1.4 - Examples of the FOE estimation using the Huber Loss Distance optimization. The light blue point 

represents the solution without any weight consideration, whereas the dark blue point represents the optimization using 

weights. 
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After the estimation of the FOE, we proceed to refine the 𝑜𝑣𝑖 weights. Figure 4.1.6 (a) presents the results 

of the iterations made to improve the Focus of Expansion and Figure 4.1.6 (b) and (c) show the resulting 

optical flow vector weights before and after the refinement is made. In fact, as seen in Figure 4.1.6, the 

moving objects (cars on the left side of the image) are much more affected than the static car on the right 

side of the image (which only loses a small portion of its optical flow vectors). In image frames where there 

are many objects that occupy a good portion of the image the final result of this process does vary a little 

from the initial estimate of the FOE. In images where there are little to no objects, this process offers almost 

no gain. A further observation is that additional iterations do not refine much more in regard to the previous 

iteration. 

     

(a)                                                                                 (b) 

Figure 4.1.5 – Heatmap of the distance between lines 𝐿𝑖 and the estimation of the FOE given by the Huber Loss Distance 

optimization calculation. 

 

 

25𝑝𝑥 

300𝑝𝑥 

𝑓(𝑥̃𝑙1 , 𝐿𝑖) 

 
(a) 
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Thus, this step does offer some improvements when there are some miscalculation of the optical flow 

resulting from moving objects in the image. This results in a more robust estimation of the FOE for 

miscalculated optical flow vectors. 

However, sometimes we are faced with a problem regarding the object detector. As previously mentioned, 

we are using the Faster R-CNN detector with the PASCAL VOC 2007 training dataset. Because, this dataset 

contains detection classes which we are not interested in, the classification for the classes that we are 

interested in suffer some misclassification. This happens when classifying objects with wrong labels and 

sometimes, classifying areas of the image where there are no objects present. Figure 4.1.7 show some 

cases of object misclassification. This can greatly impact our developed tool, as a great part of our work is 

based on this object classification. Nevertheless, we still consider that although this object detection tool 

can be improved, we can still take advantage of the information it gives and how this information is used 

throughout the whole process. 

Finally, the last step consists in performing the weighted average of the current estimate for the FOE and 

the estimates of the previous frames.  Figure 4.1.8 shows the relation between the previously found FOEs 

(shown as colour points) and the result of the weighted average using 𝑀 = 20. The colours of the FOEs 

also depict their weight for the estimate of the weighted average. This shows how useful the process of the 

temporal average is because as can be seen, the estimated FOE does vary a bit because of the natural 

swinging of the bicycle. 

 

(a.1) 

 

(b.1) 

 

(c.1) 

 

 

 

   

(b)      (c) 

Figure 4.1.6 – Results of the refinement of weights 𝑜i. In (a), the point in blue is the estimate for the FOE given 

by the Huber Loss optimization. Points in pink and lime represent iterations 1 and 2, respectively, of this 

refinement procedure. Images (b) and (c) show the difference in vectors between the vectors used in the Huber 

Loss Optimization (for point in blue) and the final refinement of the weights (for point in lime). 
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(a) 

   

(b) 

Figure 4.1.7 – Misclassification of objects in the image. In (a) a 𝑝𝑒𝑟𝑠𝑜𝑛 is classified in the middle of the cycling 

route and in (b) a 𝑐𝑎𝑟 and 𝑝𝑒𝑟𝑠𝑜𝑛 are misclassified. 
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(a)                                                                                                   (b) 

 

(c) 

 

𝑥̃𝑡 

𝑡 = −20                                                                                                          𝑡 = 0 

 
 

Figure 4.1.8 – Evolution of the previously found FOEs (𝑥̃𝑡) from image (a)-(b)-(c). As one can inspect, from one 

image to the next, the FOE gets 𝑡 − 1. Results are shown as a heatmap, with hotter colours representing a higher 

weight used in the weighted average as it represents more recent FOEs. The final result of this average is shown as 

a larger bright red point in the centre of the image. 
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4.2 Risk Assessment 

As previously mentioned, several risk assessment criteria can be defined using our framework. However, 

we decided to test two main risk criteria: Path Occupation and Proximity to the user.  

For each of the criteria used we propose a 3-level risk. For the Path Occupation (see Figure 3.7.1) we set 

the risk as: 3 – the red region is occupied; 2 – the yellow region is occupied, and; 1 – the green region is 

the only one being occupied. For the Proximity to the user criteria we defined different regions to the ones 

used in the Path Occupation criteria, which better translates the real distance to the user. This way, we use 

the sub-regions designated before to form regions of growing semi-circles concentric with the user (see 

Figure 4.2.2) and again define the levels of risk as before. These regions are all constructed around the 

FOE. Taking Figure 4.2.1.(a) the estimated FOE is given as the red point and the regions are constructed 

as follows, where (𝑥𝐹𝑂𝐸 , 𝑦𝐹𝑂𝐸) are the coordinates of the FOE in the image and 𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡 are the 

width and height of the frame and the upper left corner of the image corresponds to (0,0) and the bottom 

right corner to (𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡). 

• Region 1: Formed by the points at coordinates (𝑥𝐹𝑂𝐸 +
𝑤𝑖𝑑𝑡ℎ

25
, 𝑦𝐹𝑂𝐸 −

ℎ𝑒𝑖𝑔ℎ𝑡

16
), (𝑥𝐹𝑂𝐸 −

𝑤𝑖𝑑𝑡ℎ

25
, 𝑦𝐹𝑂𝐸 −

ℎ𝑒𝑖𝑔ℎ𝑡

16
), (𝑥𝐹𝑂𝐸 +

𝑤𝑖𝑑𝑡ℎ

4
, ℎ𝑒𝑖𝑔ℎ𝑡), (𝑥𝐹𝑂𝐸 −

𝑤𝑖𝑑𝑡ℎ

4
, ℎ𝑒𝑖𝑔ℎ𝑡); 

• Region 2: Left triangle formed by: (𝑥𝐹𝑂𝐸 −
𝑤𝑖𝑑𝑡ℎ

25
, 𝑦𝐹𝑂𝐸 −

ℎ𝑒𝑖𝑔ℎ𝑡

16
), (0, ℎ𝑒𝑖𝑔ℎ𝑡), (𝑥𝐹𝑂𝐸 −

𝑤𝑖𝑑𝑡ℎ

4
, ℎ𝑒𝑖𝑔ℎ𝑡); 

and right triangle by (𝑥𝐹𝑂𝐸 +
𝑤𝑖𝑑𝑡ℎ

25
, 𝑦𝐹𝑂𝐸 −

ℎ𝑒𝑖𝑔ℎ𝑡

16
), (𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡), (𝑥𝐹𝑂𝐸 +

𝑤𝑖𝑑𝑡ℎ

4
, ℎ𝑒𝑖𝑔ℎ𝑡); 

• Region 3: Left polygon formed by: (𝑥𝐹𝑂𝐸 −
𝑤𝑖𝑑𝑡ℎ

25
, 𝑦𝐹𝑂𝐸 −

ℎ𝑒𝑖𝑔ℎ𝑡

16
), (0, ℎ𝑒𝑖𝑔ℎ𝑡), (𝑥𝐹𝑂𝐸 −

𝑤𝑖𝑑𝑡ℎ

25
,
7𝑦𝐹𝑂𝐸

8
−

23ℎ𝑒𝑖𝑔ℎ𝑡

128
), (

7𝑥𝐹𝑂𝐸

8
−

27𝑤𝑖𝑑𝑡ℎ

200
,
7𝑦𝐹𝑂𝐸

8
−

23ℎ𝑒𝑖𝑔ℎ𝑡

128
), (0, 𝑦𝐹𝑂𝐸 −

ℎ𝑒𝑖𝑔ℎ𝑡−𝑦𝐹𝑂𝐸

8
); and right polygon formed by 

(𝑥𝐹𝑂𝐸 +
𝑤𝑖𝑑𝑡ℎ

25
, 𝑦𝐹𝑂𝐸 −

ℎ𝑒𝑖𝑔ℎ𝑡

16
), (𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡), (𝑥𝐹𝑂𝐸 +

𝑤𝑖𝑑𝑡ℎ

25
,
7𝑦𝐹𝑂𝐸

8
−

23ℎ𝑒𝑖𝑔ℎ𝑡

128
), (

7𝑥𝐹𝑂𝐸

8
−

14𝑤𝑖𝑑𝑡ℎ

200
,
7𝑦𝐹𝑂𝐸

8
−

23ℎ𝑒𝑖𝑔ℎ𝑡

128
), (𝑤𝑖𝑑𝑡ℎ, 𝑦𝐹𝑂𝐸 −

ℎ𝑒𝑖𝑔ℎ𝑡−𝑦𝐹𝑂𝐸

8
); 

Figure 4.2.1.(b) shows the division of the regions in (a) into 5 horizontal strips. 

    
(a)                                                                                                   (b) 

Figure 4.2.1 – Construction of the regions and sub-regions of the frame given the estimate of the FOE (red point). 
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To test our risk assessment classifier, we created a training set by manually classifying around 240 image 

frames (with 80 images per each one of the three risk levels for each of the criteria), which were captured 

using the smartphone’s app described in Chapter 2. Using this training set, we set to use the rule of thumb 

of 75% to 25% of training to test data ratio. 

Additionally, because our classifying metric is based on EMD, we defined the 25×25 ground distance matrix 

for each one of the criteria used. Both matrices used promote the nearness of regions and sub-regions, the 

symmetry in the image and the borders of each region. This way, we set to add a factor (equal to 1) to 

distances between sub-regions and multiply by a factor (equal to 2) when transitioning from one region to 

the other (i.e., we add 1 to neighbouring sub-regions and we multiply the distance going from the red region 

to the yellow region by a factor of 2 and from the red region to the green region by a factor of 2). This way, 

the defined distance matrices used for the Path Occupation and for the Proximity criteria, which are 

presented in detail in Appendix B. In order to solve the EMD, we used the Python Toolbox 𝑝𝑦𝑒𝑚𝑑 [42], [43]. 

For the object type 𝛼𝑙 used in the calculation of the risk descriptor we consider that certain object present a 

bigger threat than others. This way, we define it as 

𝛼𝑘 = {

1.0 𝑖𝑓 object 𝑘 is motorized (car, motorbike or bus),

0.8 𝑖𝑓 object 𝑘 is a bike,
0.6 𝑖𝑓 object 𝑘 is a person

 (19) 

 

Figure 4.2.2 – Regions used for the Proximity criteria used in the risk assessment. The colours indicate the level of 

risk: red – highest risk level (3); yellow – intermediate risk level (2), and; green – lowest risk level (1). 
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Furthermore, the region and sub-region factor used in (18) is defined as  

𝛾𝑙 = 𝜑𝑙 ⋅ 𝜓𝑙  , (20) 

where 𝜑𝑙 is the region factor and 𝜓𝑙 the sub-region factor and 𝜓𝑙 grows linearly to the proximity to the user 

(i.e., the top-most sub-region corresponds to 𝜓𝑙 = 0.6, the one bellow that 𝜓𝑙 = 0.7, until the bottom-most 

sub-region that is equivalent to 𝜓𝑙 = 1) and 𝜑𝑙 is defined as 

𝜑𝑙 = {

1.0 𝑖𝑓 region 𝑙 is of risk level 3 (red area),
0.75 𝑖𝑓 region 𝑙 is of risk level 2 (yellow area)

0.30 𝑖𝑓 region 𝑙 is of risk level 1 (green area).
, (21) 

Moreover, for the objects bounding box, because we consider that every object is in contact with the ground, 

we, instead of using the bounding box given by the NN, use an alternative bounding box. We use the width 

of the box given by the NN and the height given by max (10 𝑝𝑖𝑥𝑒𝑙𝑠, 0.2 ⋅ 𝑁𝑁′𝑠 𝑏𝑜𝑢𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 ℎ𝑒𝑖𝑔ℎ𝑡). Using 

 

Figure 4.2.3 – Boxes of the objects. In blue, the bounding box given by the NN is shown, whereas in green it is 

shown the box of the alternative box used as a projection of the object on the ground. 
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this box better projects the object on the ground and in the risk zones (which correspond to regions on the 

ground). Figure 4.2.3 shows the used bounding boxes in relation to the ones outputted by the NN. 

  
(a.1)                                                                                     (b.1) 

  

(a.2)                                                                                     (b.2) 

  

(a.3)                                                                                     (b.3) 

Figure 4.2.4 – Risk Assessment framework. Images (a.1)-(a.3) represent the Path Occupation criteria, whereas 

images (b.1)-(b.3) correspond to the Proximity criteria. Images (1) correspond to risk level 1, (2) to risk level 2, and 

lastly, (3) to risk level 3. 
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Examples of situations for each level of risk for each of the two criteria used are shown in Figure 4.2.4. 

Given all this, we ran our classifier for 60 images frames, composing our test data. We present our results 

as a confusing matrix in Table 1 for the Path Occupation classifier and in Table 2 for the Proximity classifier. 

We conclude that there is no misclassifications between risk levels 1 and 3 and, as such, we have a good 

separation between these two classes. The accuracy for the Path Occupation classifier is relatively high, 

showing an error rate of around 20-25% for each class. However, for the Proximity classifier the results 

show some misclassification between risk levels 3 and 2, which we consider as a result of objects being too 

close to the limits of both red and yellow regions during the labelling phase, and thus resulting in some 

erroneous classifications. Likewise, because we have discretised our risk levels throughout the defined 

regions, i.e., the risk levels are not continuous, it is expected that there are some risk misclassifications 

when objects are positioned near or on top of the boundaries of each zone. 

  

Table 1 – Confusion Matrix for the Path Occupation classifier. 

 Predicted Class 

1 2 3 

T
ru

e
 C

la
s
s

 1 80.0 20.0 0.0 

2 9.1 81.8 9.1 

3 0.0 25.0 75.0 

 

 Table 2 – Confusion Matrix for the Proximity classifier. 

 Predicted Class 

1 2 3 

T
ru

e
 C

la
s
s

 1 66.7 33.3 0.0 

2 10.7 82.1 7.2 

3 0.0 41.2 58.8 
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4.3 Elementary Event Classification 

As a side effect of the discovery of the Focus of Expansion we are also able to discover elementary events 

as it was done in [27]. However, a different approach is done and thus a direct comparison between how 

the two methods perform will not be done. Instead, a qualitative assessment is done to show how the method 

performs using this novel approach to detect elementary events. 

Vieira had as an objective the mapping of basic events that happened to the cyclist, namely turn left, turn 

right, among others. While in [27] an area on the image is defined to map the regions to do the OF 

calculations to then classify events, our approach uses the FOE calculated from the optical flow calculated 

as described above. Explicitly, we primarily use the Focus of Expansion discovered on the current frame 

and compare its changes to the previously calculate FOEs and then estimate an event based on the 

variation that occurred. Similar to [27], we detect the following elementary events: 

• Turn Left: the cyclist turns left; 

• Turn Right: the cyclist turns right; 

• Ground Irregularities: there are some irregularities on the ground; 

• Being Overtaken: the cyclist is being overtaken by some object in his left, and; 

• Clear Path: there is no obstacles in the path the cyclist is taking. 

Following is a brief description and results of how we proceed to detect the above mentioned elementary 

events. 

A. Turn Left 

The Turn Left event can be seen as the movement described by the cyclist when turning left at an 

intersection for example. In order to describe the Turn Left event, let us start by considering two additional 

movements: Smooth Turn Left and Sharp Turn Left. We defined these two supplementary movements 

because the former can be used to characterise small bike handling movements, and thus it is not a proper 

turn left as described above, and the latter because sometimes the user must do a sharp turn to avoid some 

unexpected obstacle, and thus, again, it is not a proper Turn Left. 

To discover the Smooth Turn Left event, we start by looking at the current computed FOE and comparing it 

to the FOEs computed in the previous 𝑀 − 1 frames (i.e., we use (15) with 𝑗 = 1,… ,𝑀). If the horizontal 

variation (𝑥 axis in the image) is above a certain threshold and the new FOE it to the left of the previous 

FOEs, we consider it to be a Smooth Turn Left movement. Again, to discover the Sharp Turn Left movement 

we proceed in the same manner, except for the used threshold being much higher than the one used in the 

Smooth Turn Left.  
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To conclude, we use the Smooth Turn Left movement to discover the actual Turn Left event. We consider 

that if three Smooth Turn Left movements happen in a row, a Turn Left actually happened. 

Figure 4.3.1 shows the thresholds used for the detection of the above described movements. 

 

 

Figure 4.3.1 – Turn Left event. It is shown the current FOE (red point), the previously averaged FOEs (green point) 

and the thresholds for the Smooth Turn Left (green line) and for the Sharp Turn Left (cyan line).  

 

 

Figure 4.3.2 - Turn Right event. It is shown the current FOE (red point), the previously averaged FOEs (green point) 

and the thresholds for the Smooth Turn Right (green line) and for the Sharp Turn Right (cyan line). It is seen, that 

because the red point is to the right of the green line, there is currently a Smooth Turn Right movement. 
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B. Turn Right 

To discover the Turn Right event, we proceed exactly like described in the Turn Left event, considering the 

same extra Smooth Turn Right and Sharp Turn Right movements.  

 
(a.1) 

 

(a.2) 

 

(a.3) 

Figure 4.3.3 – Elementary Events: (a) Turn Left. Three Smooth Turn Left/Right events must happen prior to a 

Turn Left or Turn Right event. In sequence (a) the cyclist is turning left to pass the stopped white van.  
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However, while before, we must have considered the horizontal variation of the current FOE to the left of 

the previous FOEs, here we check if the new FOE is to the right of the previous FOEs. Again, we only 

consider that there was a Turn Right event if three Smooth Turn Right movements happened in a row. 

Figure 4.3.2 shows the thresholds used for the detection of the described movements. 

Figure 4.3.3 shows an example of a Turn Left when the cyclist tries to overtake a stopped van. 

 

 

 

Figure 4.3.4 – Ground Irregularities event. On the left frames of a video are shown, while on the right a scheme of what 

is happening is presented. Green lines show the thresholds used to detect the vertical variation of the current FOE (red 

point) to the previous FOEs (green point). 

 

 

(a) 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

(c) 
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C. Ground Irregularities 

When there are ground irregularities, a specific series of event usually occur (see Figure 4.3.4). First, we 

see a huge variation in the vertical component of the FOE (𝑦 axis of the image). Following that variation, we 

see an approximate variation in the vertical opposite direction and finally, another variation is seen in the 

same vertical direction of the first variation. To check when this happens, we check the currently discovered 

FOE and check if its vertical component has surpassed a certain threshold and save this occurrence. In the 

next frame, we check whether the vertical component of the FOE has changed in the opposite direction of 

the saved state by a certain threshold and save this state. We finally re-test using the same test as the one 

used in the first saved state. If the occurrences tick all three tests, then we say there are some irregularities 

on the ground. 

 

D. Being Overtaken 

As shown in [27], when being overtaken, the optical flow which is calculated on the left side of the image 

shows a distinct behaviour: its direction is opposite to the flow resulting from the movement of the cyclist. 

Given this, we exploit two aspects of our work to detect the Being Overtaken event: we see if there is any 

object to the left of the FOE and we see to where the optical flow calculated in that area is pointing to. 

 

Figure 4.3.5 – Being Overtaken event. The green box contemplates the bounding box of the object as given by the 

NN and the green lines represent the optical flow pointing towards the FOE (red point). 
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First, we check if there is any object (car, bus, motorbike or bike) to the left of the FOE. If so, we then check 

whether the majority of the flow being calculated in the object reflects the movement of the user or if it points 

in the opposite direction and towards the FOE. If the latter is true, we assume that the cyclist is being 

overtaken, as shown in Figure 4.3.5 and Figure 4.3.6. 

E. Clear Path 

For the Clear Path event, we take advantage of the risk areas defined above. Here we simply check if there 

is any object in the image that is inside the red area. If so, we can conclude the path is occupied. Otherwise 

we can assess that the path is clear and not occupied by any object. 

   
(a)                                                                                      (b) 

Figure 4.3.6 – Primal Event: Being Overtaken. When being overtaken, the optical flow calculated in the object 

points towards the FOE and not away from it as normally. Images (a) and (b) show precisely this. 

 

 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 4.3.7 – Elementary event: Free Path. As shown in images (a) and (b) there are objects in the user’s 

trajectory, whereas in (c) and (d) the path is clear and so we have a Free Path event. 
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Chapter 5 

5 Conclusions
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In this chapter, we present the conclusions taken from the developed work and what future work 

can be done following this thesis. 

5.1 Conclusions 

The main objectives for this work was to prove that with captured images from a smartphone mounted on a 

bicycle’s handlebar it was possible to determine the direction of the cycler and to establish a risk assessment 

criteria that would enable the analysis of situations that bicyclists face each day. 

The improved data capture system proved to be useful, as it enabled the capture of video directly from the 

developed smartphone’s application, along with other sensory data.  

The videos captured proved that information related to motion is can still be gathered in the form of optical 

flow vectors, that can then be transformed into the Focus of Expansion, which determines the direction of 

the cycler. This important point in the image can be easily computed, despite the constant shakiness of the 

handlebar and the bike itself. This is due to the computed weights of both the magnitude of vectors and 

objects in the image and the weighted average of the previous Foci of Expansion of previous frames in the 

video. 

Concerning the risk assessment, two different criteria were developed regarding the occupation of the 

cycler’s path and the proximity to objects. Both criteria are useful in assessment the amount of danger the 

cycler faces in each situation along its ride because one focus on obstacles along its journey, whereas the 

second the distance to each object. This makes it that the developed work can be used in mapping 

geographic locations where constant danger situations happen, and thus help urban planners plan better 

cycling infrastructures that ultimately contribute to a healthier and safer mean of transportation. 

 

5.2 Future Work 

Regarding future work, it would be interesting to distribute the improved developed app to a large number 

of users to better assess where and what dangers cyclists face each day.  

Another route that can be taken is to improve the detection of objects as these take a major role throughout 

this work. In fact, it what could be done is take image samples from our data capture system and use these 

as training data for the neural network, as this way, the training would directly affect the results, as the 

network would be trained for the kind of images that we capture along any ride and not images of cars which 

are placed in a completely different situation.  

In regard to the risk descriptor, firstly it would be interesting to assess danger situations using other metrics 

that can be more useful in certain situation and give more information to city planners. Secondly, using an 
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example, it would also be interesting to assess how the current road and cycling infrastructures works being 

conducted in the city of Lisbon at this moment would impact the difference in risk that cyclers face when 

riding in these work locations, because currently there is no concrete method to evaluate how this 

construction works would benefit bicyclists.  
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6 Appendixes 

Appendix A – Mobility in Cities: App’s usage 

The app is divided in two main menus, each depicted in  

 

Figure A.1: 

1. Gather Data: menu responsible for acquiring data; 

2. Upload Data: menu for uploading the previously acquired data to a server. 

 

 

Figure A.1 – Screenshots of the App’s menus: (a) Gather Data and (b) Upload Data. 

Concerning the data acquisition process we can consider the flowchart shown in Figure A.2 which illustrates 

how the App works after the Start button is pressed.  

After “Start” is pressed, it is checked if it is a sensor only acquisition or a sensor, film or audio acquisition. 

The sensor data is written in a text file with all the variables described above. A writing cycle is created and 

a measurement is taken every 100 𝑚𝑠. However, because each writing to the file takes on average 20 to 

30 𝑚𝑠, we end up with a variable writing frequency of 7 to 9 𝐻𝑧. If it is also a movie acquisition, a service for 

(a) (b) 
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the recording is started according to the user desirable recording quality and frames-per-second recording, 

which are explained further down. The recording is started inside the service and a MP4 file is created to 

save the movie. If an audio recording is also desired, a new service is started and a new 3GP audio file is 

created. 

Start

 Record  
checked?

Acquire data from 
the sensors 

(accelerometer, 
gyroscope,...)

Start recording a 
movie

Save results in a .txt 
file

Save frame to a 
.mp4 file

 Stop  pressed?

100ms Elapsed

Recording 
Movie?

End

Record a frame

Time for next frame 
elapsed

Recording 
Movie = false

 Record  
checked?

Recording 
Movie = true

Start an audio 
recording

Save frame to a .3gp 
file

Recording 
Audio?

Recording 
Audio = true

Recording 
Audio = false

 

Figure A.2 – Flowchart of the data acquisition of the App. 

When “Stop” is pressed the sensor acquisition is halted and a message is sent to the previously started 

services (if it was the case) to finish the recordings. Both the sensor text file, the MP4 movie file and the 
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3GP is saved under an app directory in the flash memory of the smartphone. All files share the same name 

so that it is known which files match each other. 

On the Upload Data menu, a list of all saved files is shown, and the user can select or deselect files to 

upload. Four buttons are presented (enumerated from left to right):  

• Refresh the current list: searches for new recordings in the app’s folder in the flash memory; 

• Delete all already sent files: deletes all sent files to the server to save memory space; 

• Select all unsent files: select all files that have yet to be set to the server, and; 

• Upload selected files: uploads the selected files to the server. 

The app has also some settings which need to be configured prior to acquiring some data. Figure A.3 (a) 

portraits the First Time Configuration menu, where the user is asked to input some information about itself. 

This information will later be used to create an individual user account, where the user can view its walking, 

biking or driving recorded paths, and other information which will later be accessible. 

 

 

Figure A.3 - Screenshots of the App’s menus: (a) First Time Configuration (b) Settings. 

Other app settings are also important for the correct functioning of the acquisition process. These other 

settings are accessible in the Settings menu shown in Figure A.3 (b). These other settings include: 

• Video FPS: choose between recording at 1, 5, 15 or 30 FPS; 

(a) (b.1) (b.2) 



55 

• Video Quality: choose between recording at Low Quality or High Quality, where each one of these 

depend on the smartphone hardware; 

• Upload while charging: choose between only being able to upload a file while the device is being 

charged, and; 

• Upload only while connected to Wi-Fi: choose between only being able to upload a file while the 

device is connected to Wi-Fi. 

Other settings which were not released in the current version of the App include an automatically uploading 

feature, which would upload the acquisition files directly when the smartphone is connected to the Internet 

and a smaller sensor acquisition, which would decrease the amount of captured data to only acquire 

essential data and therefore decrease the time it takes to write the captured sensor values in the file.  
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Appendix B – Different Methods to calculate the Focus of 

Expansion 

There are other ways to compute the Focus of Expansion in an image frame. Below is the formulation of 

other two optimization problems, as well as the description of two RANSAC initialized procedures. 

A. Least Squares Optimization Problem 

Least Squares (or 𝑙2-norm) is a optimization problem formulation which provides a stable solution that can 

be found using analytical computation. However, one must consider that outliers may take a huge role in 

disrupting the final result, as they get amplified in this formulation. 

The optimization problem using the least squares can be formulated as in (22) and in (23) considering the 

weights 𝑤𝑖. 

𝑥̃ = argmin
𝑥

∑𝑓(𝑥, 𝐿𝑖)
2

𝑁

𝑖=0

 (22) 

𝑥̃ = argmin
𝑥

∑𝑤𝑖 ⋅ 𝑓(𝑥, 𝐿𝑖)
2

𝑁

𝑖=0

 (23) 

 

B. Manhattan Distance Optimization Problem 

The Manhattan Distance or 𝑙1-norm, improves the 𝑙2-norm (or Least Squares) on the fact that is more robust 

to outliers as it does not amplify them. However, it does not provide a close form solution and thus can be 

computational expensive when compared to the 𝑙2-norm. 

The optimization problem using the 𝑙1-norm can be formulated as in (24) and in (25) considering the weights 

𝑤𝑖. 

𝑥̃ = argmin
𝑥

∑|𝑓(𝑥, 𝐿𝑖)|
 

𝑁

𝑖=0

 (24) 

𝑥̃ = argmin
𝑥

∑𝑤𝑖|𝑓(𝑥, 𝐿𝑖)|
 

𝑁

𝑖=0

 (25) 

 



57 

Figure B.1 – A generic view on a one-dimension variable for Least Squares (red), Manhattan Distance 

(green) and Huber Loss with 𝛿 = 1 (blue) functions. shows a representation of the 3 functions used in the 

three optimization problems (Least Squares Distance, Manhattan Distance and Huber Loss Distance) using 

a one-dimension variable. 

C. RANSAC 

The Random Sample Consensus (RANSAC) is an iterative method to try and estimate a model from data 

samples. Its objective is to try and find a minimum number of points from the data that model a certain 

scenario. In our case, it is to try and find a minimum number of optical flow vectors that converge to a certain 

location in the image (the FOE). To do this, we start by randomly selecting two optical flow vectors from the 

ones found above. The intersection of the two lines given by the extension of these two optical flow vectors 

is our estimated FOE. We then check how many other OF vectors also point towards this estimated FOE. 

If a certain minimum number of vectors respects this FOE, we accept the estimated FOE and output 𝑥𝐹𝑂𝐸 . 

However, in the event that not a minimum number of vectors is found that respect the found FOE, we restart 

and repeat the process, choosing another set of two random initial vectors.  

We consider that to have an acceptable estimation of the focus of expansion we must have at least a ratio 

of 60% of vectors that point towards the same FOE from the whole set of optical flow vectors, and we 

consider these vectors as inliers if the angle between the line from the FOE and the vector and the line of 

the extension of the FOE is below a certain threshold (e.g. 15°, see ). A pseudocode of this method can be 

found in Algorithm 1. 

Figure B.1 – A generic view on a one-dimension variable for Least Squares (red), Manhattan Distance (green) and Huber 

Loss with 𝛿 = 1 (blue) functions. 
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D. Modified RANSAC 

The last method we test to find the FOE is what we denominated by modified RANSAC, as it starts by using 

the RANSAC iterative method but then tries to optimize each RANSAC iteration.  

Again, we start by randomly selecting two OF vectors from the set of available vectors. Given these two 

vectors, we find their line’s extension intersection. Using this intermediate intersection point we then find 

what vectors are considered as inliers (again using the method described above). Now, instead of checking 

if the ratio of inliers is above an acceptable value, we try and solve the least square optimization problem 

using all the available inliers at the current iteration. Specifically, we solve the method described in A. Least 

Squared Optimization Problem, but now, only using the vectors we consider as inliers and not the whole set 

of OF vectors. Since all the vectors are considered as inliers, we consider that there is almost to no gain in 

using the other optimization methods described (𝑙1-norm or Huber Loss) and as such we can achieve a 

faster solution. After discovering this new point, we check again if there are new vectors that have become 

inliers to the newly discovered point. If there are, we re-ran the optimization problem including the newly 

added inliers and discover a new FOE. We repeat the process until we have converged, i.e., the difference 

between the newly discovered point and the previously discovered point is below a certain threshold, or until 

a maximum number of iteration have passed. However, after this iteration method, we still check whether 

the ratio of inliers to the number of vectors is above a certain threshold (e.g. 60%). If it is, we accept this 

point as the FOE. If not, we restart the whole process by randomly choosing another set of two OF vectors. 

A pseudocode for this modified RANSAC method can be found in Algorithm 2. 

At first glance, all five methods (including the Huber Loss Distance optimization) are able to estimate well 

the FOE. However, the last two explored methods present some inconsistencies. In the RANSAC and 

Modified RANSAC approaches we set two parameters: the inlier acceptance angle as 𝜃𝑖𝑛𝑙𝑖𝑒𝑟 ≤ 15° and the 

acceptable inlier’s ratio to 60%. Because of the fact that we only accept FOE estimations where we have 

an inlier’s to total number of vectors ratio of at least 60% and have this inlier’s condition, this makes it that 

Algorithm 1 RANSAC  

Data: OF vectors 
Result: FOE 
 
for _𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do 

    𝑠𝑢𝑏𝑠𝑒𝑡 ← randomlyChooseTwoVectors(𝐷𝑎𝑡𝑎) 

    𝑥 ← intersectionLines(𝑠𝑢𝑏𝑠𝑒𝑡) 
    𝑖𝑛𝑙𝑖𝑒𝑟𝑠 ← findInliers(𝐷𝑎𝑡𝑎, 𝑥) 

    𝑟𝑎𝑡𝑖𝑜𝐼𝑛𝑙𝑖𝑒𝑟𝑠 ← #𝑖𝑛𝑙𝑖𝑒𝑟𝑠 / #𝐷𝑎𝑡𝑎 

    if 𝑟𝑎𝑡𝑖𝑜𝐼𝑛𝑙𝑖𝑒𝑟𝑠 >  _𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐼𝑛𝑙𝑖𝑒𝑟𝑠𝑅𝑎𝑡𝑖𝑜 then 

        return 𝑥 
end 
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not all frames have a solution to our problem. In fact, in our tests, only about of 20-40% of the frames have 

a solution for these two approaches. As such, we decided to forgo these two methods, as it is of the upmost 

importance to estimate the FOE in a more general and consistent scenario. 

Next, we set to study the differences of estimating the FOE using one of the three optimization 

aforementioned methods. In order to solve (22) and (23) we used the Python Toolbox 𝑐𝑣𝑥𝑜𝑝𝑡 [44] and the 

custom module 𝐿1-𝑛𝑜𝑟𝑚 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 [45]. Figure B.2 show a heatmap of the distance between the 

optical flow lines 𝐿𝑖 and the Focus of Expansion, 𝑓(𝑥̃, 𝐿𝑖). Figure B.3 shows a comparison between all three 

approaches. As shown, all three methods are able to do a good estimation of the Focus of Expansion. 

However, when there are numerous miscalculations on the optical flow, the Least Squares approach is 

expected to perform worse than the other two, as it exponentiates outliers. The other two method’s results 

are very similar to one another and behave similarly, as one can inspect in Figure B.3.  

Being so similar in terms of results, in the end, we chose as the final and best estimator the Huber Loss 

method, as it provides the best of both worlds, being robust to outliers, but still penalizing them in the 

process. Thus, what follows is in respect to the Focus of Expansion estimation using the Huber Loss 

Distance Optimization method. 

  

Algorithm 2 Modified RANSAC  

Data: OF vectors 
Result: FOE 
 
for _𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do 

    𝑠𝑢𝑏𝑠𝑒𝑡 ← randomlyChooseTwoVectors(𝐷𝑎𝑡𝑎) 

    𝑥 ← intersectionLines(𝑠𝑢𝑏𝑠𝑒𝑡) 
    𝑥1 ← 0 

    for 𝑥 − 𝑥1 > _𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑜𝑟𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 and 

          𝑖𝑛𝑙𝑖𝑒𝑟𝑠 ≠ ∅ do 

        𝑥 ← 𝑥1 
        𝑖𝑛𝑙𝑖𝑒𝑟𝑠 ← findInliers(𝐷𝑎𝑡𝑎, 𝑥) 

        𝑥1 ← leastSquaresOptimizationProblem(𝑖𝑛𝑙𝑖𝑒𝑟𝑠)     
        𝑟𝑎𝑡𝑖𝑜𝐼𝑛𝑙𝑖𝑒𝑟𝑠 ← #𝑖𝑛𝑙𝑖𝑒𝑟𝑠 / #𝐷𝑎𝑡𝑎 
        if 𝑟𝑎𝑡𝑖𝑜𝐼𝑛𝑙𝑖𝑒𝑟𝑠 > _𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐼𝑛𝑙𝑖𝑒𝑟𝑠𝑅𝑎𝑡𝑖𝑜 then 

            return 𝑥1 
    end 
end 
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Figure B.2 - Examples of the FOE estimation methods: (a) - 𝑙1 Norm Optimization, (b) – Least Squares Optimization, 

(c) – Huber Loss Optimization, (d) – RANSAC, and (e) – Modified RANSAC. For (a), (b) and (c) the lighter colour point 

represent the solution without any weight consideration, whereas the darker colour point represents the optimization 

using weights. 
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(b) 

 

(d) 

 

(f) 

 

 

 

 

(a) 

 

(c) 

 

(e) 

 

 

 

Figure B.3 – Estimation of the FOE using all three optimization methods: green – Least Squares Optimization; 

orange – Manhattan Distance Optimization, and; blue – Huber Loss Optimization. Again, lighter colour point represents 

the weightless optimization and darker colour the weighted optimization problem solutions.  
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Appendix C – Distance Matrices used in the Earth Mover’s 

Distance 

Distance Matrix for EDM in the Lane/Path Occupation criteria: 

𝐶𝑃𝑎𝑡ℎ𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 1 2 3 4 2 4 6 8 10 2 4 6 8 10 8 12 16 20 24 8 12 16 20 24
1 0 1 2 3 4 2 4 6 8 4 2 4 6 8 12 8 12 16 20 12 8 12 16 20
2 1 0 1 2 6 4 2 4 6 6 4 2 4 6 16 12 8 12 16 16 12 8 12 16
3 2 1 0 1 8 6 4 2 4 8 6 4 2 4 20 16 12 8 12 20 16 12 8 12
4 3 2 1 0 10 8 6 4 2 10 8 6 4 2 24 20 16 12 8 24 20 16 12 8
2 4 6 8 10 0 1 2 3 4 0 1 2 3 4 2 4 6 8 10 2 4 6 8 10
4 2 4 6 8 1 0 1 2 3 1 0 1 2 3 4 2 4 6 8 4 2 4 6 8
6 4 2 4 6 2 1 0 1 2 2 1 0 1 2 6 4 2 4 6 6 4 2 4 6
8 6 4 2 4 3 2 1 0 1 3 2 1 0 1 8 6 4 2 4 8 6 4 2 4
10 8 6 4 2 4 3 2 1 0 4 3 2 1 0 10 8 6 4 2 10 8 6 4 2
2 4 6 8 10 0 1 2 3 4 0 1 2 3 4 2 4 6 8 10 2 4 6 8 10
4 2 4 6 8 1 0 1 2 3 1 0 1 2 3 4 2 4 6 8 4 2 4 6 8
6 4 2 4 6 2 1 0 1 2 2 1 0 1 2 6 4 2 4 6 6 4 2 4 6
8 6 4 2 4 3 2 1 0 1 3 2 1 0 1 8 6 4 2 4 8 6 4 2 4
10 8 6 4 2 4 3 2 1 0 4 3 2 1 0 10 8 6 4 2 10 8 6 4 2
8 12 16 20 4 2 4 6 8 10 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
12 8 12 16 20 4 2 4 6 8 4 2 4 6 8 1 0 1 2 3 1 0 1 2 3
16 12 8 12 16 6 4 2 4 6 6 4 2 4 6 2 1 0 1 2 2 1 0 1 2
20 16 12 8 12 8 6 4 2 4 8 6 4 2 4 3 2 1 0 1 3 2 1 0 1
24 20 16 12 8 10 8 6 4 2 10 8 6 4 2 4 3 2 1 0 4 3 2 1 0
8 12 16 20 24 2 4 6 8 10 2 4 6 8 10 0 1 2 3 4 0 1 2 3 4
12 8 12 16 20 4 2 4 6 8 4 2 4 6 8 1 0 1 2 3 1 0 1 2 3
16 12 8 12 16 6 4 2 4 6 6 4 2 4 6 2 1 0 1 2 2 1 0 1 2
20 16 12 8 12 8 6 4 2 4 8 6 4 2 4 3 2 1 0 1 3 2 1 0 1
24 20 16 12 8 10 8 6 4 2 10 8 6 4 2 4 3 2 1 0 4 3 2 1 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  (26) 
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Distance Matrix for EDM in the Proximity criteria: 

𝐶𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 2 4 6 8 1 4 6 16 20 1 4 6 16 20 2 3 4 10 12 2 3 4 10 12
2 0 2 4 6 4 1 2 6 8 4 1 2 6 8 6 4 6 4 5 6 4 7 4 5
4 2 0 1 2 12 4 2 2 3 12 4 2 2 3 16 12 8 6 8 16 12 8 6 8
6 4 1 0 1 16 6 4 1 2 16 6 4 1 2 20 16 12 4 6 20 16 12 4 6
8 6 2 1 0 20 8 6 2 1 20 8 6 2 1 24 20 16 6 4 24 20 16 6 4
1 4 12 16 20 0 2 4 12 16 0 2 4 12 16 1 2 3 8 10 1 2 3 8 10
4 1 4 6 8 2 0 1 4 6 2 0 1 4 6 4 2 4 3 4 4 2 4 3 4
6 2 2 4 6 4 1 0 2 4 4 1 0 2 4 6 4 2 2 3 6 4 2 2 3
16 6 2 1 2 12 4 2 0 1 12 4 2 0 1 16 12 8 2 4 16 12 8 2 4
20 8 3 2 1 16 6 4 1 0 16 6 4 1 0 20 16 12 4 2 20 16 12 4 2
1 4 12 16 20 0 2 4 12 16 0 2 4 12 16 1 2 3 8 10 1 2 3 8 10
4 1 4 6 8 2 0 1 4 6 2 0 1 4 6 4 2 4 3 4 4 2 4 3 4
6 2 2 4 6 4 1 0 2 4 4 1 0 2 4 6 4 2 2 3 6 4 2 2 3
16 6 2 1 2 12 4 2 0 1 12 4 2 0 1 16 12 8 2 4 16 12 8 2 4
20 8 3 2 1 16 6 4 1 0 16 6 4 1 0 20 16 12 4 2 20 16 12 4 2
2 6 16 20 24 1 4 6 16 20 1 4 6 16 20 0 1 2 6 8 0 1 2 6 8
3 4 12 16 20 2 2 4 12 16 2 2 4 12 16 1 0 1 4 6 1 0 1 4 6
4 6 8 12 16 3 4 2 8 12 3 4 2 8 12 2 1 0 2 4 2 1 0 2 4
10 4 6 4 6 8 3 2 2 4 8 3 2 2 4 6 4 2 0 1 6 4 2 0 1
12 5 8 6 4 10 4 3 4 2 10 4 3 4 2 8 6 4 1 0 8 6 4 1 0
2 6 16 20 24 1 4 6 16 20 1 4 6 16 20 0 1 2 6 8 0 1 2 6 8
3 4 12 16 20 2 2 4 12 16 2 2 4 12 16 1 0 2 4 2 1 0 2 4 6
4 7 8 12 16 3 4 2 4 12 3 4 2 8 12 2 1 0 2 4 2 1 0 2 4
10 4 6 4 6 8 4 2 2 4 8 3 2 2 4 6 4 2 0 1 6 4 2 0 1
12 5 8 6 4 10 4 3 4 2 10 4 3 4 2 8 6 4 1 0 8 6 4 1 0 ]
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